Current Transients in Graphene Electronics under Single‐Particle Irradiation

Author:

He Wanzhen1,Zhai Linxin1,Yam Chi-Yung2,Xu Zhiping1ORCID

Affiliation:

1. Applied Mechanics Laboratory Department of Engineering Mechanics Tsinghua University Beijing 100084 China

2. Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen 518000 China

Abstract

Low‐dimensional materials hold great promise in next‐generation electronics. However, the performance of such devices is susceptible to external perturbations such as irradiation due to the high exposure of constituent atoms to the environment. Herein, real‐time time‐dependent density‐functional theory at the tight‐binding level extended to open systems for electrons and Ehrenfest dynamics for ions is developed and used to explore the effects of single‐H irradiation on graphene electronics. The results show that the peak current displays distinct energy and site dependences, which are largely different from the dependences of the stopping powers. Charge‐density analysis shows that the current transients are driven by delocalized plasmonic excitation, in contrast to localized electronic excitation, which plays a crucial role in the stopping power. The site dependence of the transient current is determined by the electron density at the irradiation site and the ionic charges. These findings highlight the roles of lattice discreteness and electronic structures of materials, which have been overlooked in previous studies based on theoretical formulations and semiempirical models. Using the insights gained from the calculations and the dataset constructed under typical space‐irradiation conditions, the device responses of graphene nanoelectronics are modeled, laying the ground for device design in the space environment.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3