Evolutionary computing to assemble standing genetic diversity and achieve long‐term genetic gain

Author:

Villiers Kira1ORCID,Voss‐Fels Kai P.12ORCID,Dinglasan Eric1,Jacobs Bertus3,Hickey Lee1,Hayes Ben J.1

Affiliation:

1. Queensland Alliance for Agriculture and Food Innovation The University of Queensland St Lucia Queensland Australia

2. Department of Grapevine Breeding Hochschule Geisenheim University Geisenheim Germany

3. LongReach Plant Breeders Management Pty Ltd Lonsdale South Australia Australia

Abstract

AbstractLoss of genetic diversity in elite crop breeding pools can severely limit long‐term genetic gains and limit ability to make gains in new traits, like heat tolerance, that are becoming important as the climate changes. Here, we investigate and propose potential breeding program applications of optimal haplotype stacking (OHS), a selection method that retains useful diversity in the population. OHS selects sets of candidates containing, between them, haplotype segments with very high segment breeding values for the target trait. We compared the performance of OHS, a similar method called optimal population value (OPV), truncation selection on genomic estimated breeding values (GEBVs), and optimal contribution selection (OCS) in stochastic simulations of recurrent selection on founder wheat genotypes. After 100 generations of intercrossing and selection, OCS and truncation selection had exhausted the genetic diversity, while considerable diversity remained in the OHS population. Gain under OHS in these simulations ultimately exceeded that from truncation selection or OCS. OHS achieved faster gains when the population size was small, with many progeny per cross. A promising hybrid strategy, involving a single cycle of OHS in the first generation followed by recurrent truncation selection, substantially improved long‐term gain compared with truncation selection and performed similarly to OCS. The results of this study provide initial insights into where OHS could be incorporated into breeding programs.

Funder

Australian Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genome-wide atlas of rust resistance loci in wheat;Theoretical and Applied Genetics;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3