Species divergence and environmental adaptation of Picea asperata complex at the whole genome level

Author:

Liu Yifu12,Xiao Wenfa1,Wang Fude3,Wang Ya4,Dong Yao1,Nie Wen1,Tan Cancan1,An Sanping5,Chang Ermei4,Jiang Zeping1,Wang Junhui24,Jia Zirui24ORCID

Affiliation:

1. Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute Chinese Academy of Forestry Beijing China

2. State Key Laboratory of Tree Genetics and Breeding Chinese Academy of Forestry Beijing China

3. Heilongjiang Forestry Research Institute Harbin China

4. Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry Chinese Academy of Forestry Beijing China

5. Research Institute of Forestry of Xiaolong Mountain Gansu Provincial Key Laboratory of Secondary Forest Cultivation Tianshui China

Abstract

AbstractTo study the interspecific differentiation characteristics of species originating from recent radiation, the genotyping‐by‐sequencing (GBS) technique was used to explore the kinship, population structure, gene flow, genetic variability, genotype–environment association and selective sweeps of Picea asperata complex with similar phenotypes from a genome‐wide perspective. The following results were obtained: 14 populations of P. asperata complex could be divided into 5 clades; P. wilsonii and P. neoveitchii diverged earlier and were more distantly related to the remaining 6 spruce species. Various geological events have promoted the species differentiation of P. asperata complex. There were four instances of gene flow among P. koraiensis, P. meyeri, P. asperata, P. crassifolia and P. mongolica. The population of P. mongolica had the highest level of nucleotide diversity, and P. neoveitchii may have experienced a bottleneck recently. Genotype–environment association found that a total of 20,808 genes were related to the environmental variables, which enhanced the adaptability of spruce in different environments. Genes that were selectively swept in the P. asperata complex were primarily associated with plant stress resistance. Among them were some genes involved in plant growth and development, heat stress, circadian rhythms and flowering. In addition to the commonly selected genes, different spruce species also displayed unique genes subjected to selective sweeps that improved their adaptability to different habitats. Understanding the interspecific gene flow and adaptive evolution of Picea species is beneficial to further understanding the species relationships of spruce and can provide a basis for studying spruce introgression and functional genomics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3