Niche partitioning and the storage effect facilitate coexistence in an amphibian community

Author:

Brooks George C.1ORCID,Caruso Nicholas M.1,Chandler Houston C.12,Haas Carola A.1ORCID

Affiliation:

1. Department of Fish and Wildlife Conservation Virginia Tech Blacksburg Virginia USA

2. The Orianne Society Tiger Georgia USA

Abstract

AbstractVirtually all natural community assemblages are dominated by a handful of common species. Dominant species can exert negative impacts on biodiversity through competitive exclusion, and thus there is a strong incentive to understand imbalances in community composition, changes in dominance hierarchies through time, and mechanisms of coexistence. Pond‐breeding amphibians that utilize ephemeral wetlands provide an excellent opportunity to evaluate theoretical predictions of community composition in stochastic environments. One of the most striking features of pond‐breeding amphibians is the marked stochastic fluctuations in abundance across years. Given strong theoretical and empirical links between evenness and biomass, one would expect community evenness to change from year to year. Moreover, if different species exhibit different boom‐and‐bust reproductive cycles, then a storage effect may help to explain why one species does not outcompete all others. Here, we explore the interplay between biotic and abiotic conditions in shaping amphibian communities at two ephemeral wetlands on Eglin Air Force Base, Florida. We document consistent community composition over 6 years of monitoring, resulting from a lack of species turnover and similar responses of all community members to environmental conditions. The similar dynamics of species argues against a storage effect as the sole mechanism for coexistence and instead points to niche partitioning as a more important factor. In support of this conclusion, we show that the degree of synchrony in breeding migrations only correlates with environmental conditions within species, not between species. The lack of pattern seen between species implies that individuals are somewhat constrained in the timing of breeding migrations, perhaps owing in part to competition with other community members. We hope that our work reinvigorates interest in amphibian communities and highlights ephemeral wetlands as model systems to study community dynamics in stochastic environments.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3