DNA barcodes provide insights into the diversity and biogeography of the non‐biting midge Polypedilum (Diptera, Chironomidae) in South America

Author:

da Silva Fabio Laurindo1ORCID,Pinho Luiz Carlos2,Stur Elisabeth1,Nihei Silvio Shigueo3,Ekrem Torbjørn1

Affiliation:

1. Department of Natural History NTNU University Museum, Norwegian University of Science and Technology Trondheim Norway

2. Laboratory of Systematic of Diptera, Department of Ecology and Zoology Federal University of Santa Catarina Florianópolis Brazil

3. Laboratory of Systematic and Biogeography of Insecta, Department of Zoology, Institute of Biosciences University of São Paulo São Paulo Brazil

Abstract

AbstractSouth America, particularly within its tropical belt, is renowned for its unparalleled high levels of species richness, surpassing other major biomes. Certain neotropical areas harbor fragmented knowledge of insect diversity and face imminent threats from biodiversity loss and climate change. Hence, there is an urgent need for rapid estimation methods to complement slower traditional taxonomic approaches. A variety of algorithms for delimiting species through single‐locus DNA barcodes have been developed and applied for rapid species diversity estimates across diverse taxa. However, tree‐based and distance‐based methods may yield different group assignments, leading to potential overestimation or underestimation of putative species. Here, we investigate the performance of different DNA‐based species delimitation approaches to rapidly estimate the diversity of Polypedilum (Chironomidae, Diptera) in South America. Additionally, we test the hypothesis that significant differences exist in the community structure of Polypedilum fauna between South America and its neighboring regions, particularly the Nearctic. Our analysis encompasses a dataset of 1492 specimens from 598 locations worldwide, with a specific focus on South America. Within this region, we analyzed a subset of 247 specimens reported from 37 locations. Using various methods including the Barcode Index Number (BIN), Bayesian Poisson tree processes (bPTP), multi‐rate Poisson tree processes (mPTP), single‐rate Poisson tree processes (sPTP), and generalized mixed Yule coalescent (sGMYC), we identify molecular operational taxonomic units (MOTUs) ranging from 267 to 520. Our results indicate that the sGMYC method is the most suitable for estimating putative species in our dataset, resulting in the identification of 75 species in the Neotropical region, particularly in South America. Notably, this region exhibited higher species richness in comparison to the Palearctic and Oriental realms. Additionally, our findings suggest potential differences in species composition of Polypedilum fauna between the Neotropical and the adjacent Nearctic realms, highlighting high levels of endemism and species richness in the first. These results support our hypothesis that there are substantial differences exist in species composition between the Polypedilum fauna in South America and the neighboring regions.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3