Advances in wildlife abundance estimation using pedigree reconstruction

Author:

Rosenblatt Elias1ORCID,Creel Scott2,Gieder Katherina3,Murdoch James4,Donovan Therese5

Affiliation:

1. Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA

2. Department of Ecology Montana State University Bozeman Montana USA

3. Vermont Fish and Wildlife Department Rutland Vermont USA

4. Wildlife and Fisheries Biology Program, Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA

5. U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA

Abstract

AbstractThe conservation and management of wildlife populations, particularly for threatened and endangered species are greatly aided with abundance, growth rate, and density measures. Traditional methods of estimating abundance and related metrics represent trade‐offs in effort and precision of estimates. Pedigree reconstruction is an emerging, attractive alternate approach because its use of one‐time, noninvasive sampling of individuals to infer the existence of unsampled individuals. However, advances in pedigree reconstruction could improve its utility, including forming a measure of precision for the method, establishing required spatial sampling effort for accurate estimates, ascertaining the spatial extent of abundance estimates derived from pedigree reconstruction, and assessing how population density affects the estimator's performance. Using established relationships for a stochastic, spatially explicit simulated moose (Alces americanus) population, pedigree reconstruction provided accurate estimates of the adult moose population size and trend. Novel bootstrapped confidence intervals performed as expected with intensive sampling but underperformed with moderate sampling efforts that could produce abundance estimates with low bias. Adult population estimates more closely reflected the total number of adults in the extant population, rather than number of adults inhabiting the area where sampling occurred. Increasing sampling effort, measured as the proportion of individuals sampled and as the proportion of a hypothetical study area, yielded similar asymptotic patterns over time. Simulations indicated a positive relationship between animal density and sampling effort required for unbiased estimates. These results indicate that pedigree reconstruction can produce accurate abundance estimates and may be particularly valuable for surveying smaller areas and low‐density populations.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3