Temperature and predators as interactive drivers of community properties

Author:

DeLong John P.1ORCID,Coblentz Kyle E.1,Uiterwaal Stella F.1,Akwani Chika1,Salsbery Miranda E.1

Affiliation:

1. School of Biological Sciences University of Nebraska – Lincoln Lincoln Nebraska USA

Abstract

AbstractThe effects of warming on ecological communities emerge from a range of potentially asymmetric impacts on individual physiology and development. Understanding these responses, however, is limited by our ability to connect mechanisms or emergent patterns across the many processes that drive variation in demography. Further complicating this understanding is the gain or loss of predators to many communities, which may interact with changes in temperature to drive community change. Here we conducted a factorial warming and predation experiment to test generalized predictions about responses to warming. We used microcosms with a range of protists, rotifers, and a gastrotrich, with and without the predator Actinosphaerium, to assess changes in diversity, body size, function, and composition in response to warming. We find that community respiration and predator:prey biovolume ratios peak at intermediate temperatures, while species richness declined with temperature. We also found that overall biomass increased with species richness, driven by the effect of temperature on richness. There was little evidence of an interaction between predation and temperature change, likely because the predator was mostly limited to the intermediate temperatures. Overall, our results suggest that general predictions about community change are still challenging to make but may benefit by considering multiple dimensions of community patterns in an integrated way.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3