Nickel modified TiO2/C nanodisks with defective and near‐amorphous structure for high‐performance sodium‐ion batteries

Author:

Zhang Daijie1,Xu Hui1ORCID

Affiliation:

1. Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu China

Abstract

AbstractLow‐cost sodium‐ion batteries (SIBs) are the star products in grid‐scale energy storage applications. Finding befitting anode materials is crucial to the advancement of SIBs. In this study, a novel two‐dimension (2D) nanostructured anode material composed of TiO2/C nanodisks and Ni nanoparticles that were synthesized by a facile metal‐organic frameworks derived method is reported. By introducing divalent Ni2+ ions in the synthesis process, TiO2/C microblocks were successfully transformed into the desirable 2D nanodisks, enabling the active materials to be more efficiently and fully utilized due to short diffusion path and substantive exposed active sites. Another important role of Ni2+ ions is as a doping source for TiO2, resulting in the formation of a defective and near‐amorphous TiO2/C structure, which aids in improving the kinetics. In addition, some Ni nanoparticles formed and attached to the surface of the TiO2/C nanodisks, which not only act as conductive bridges to make all the nanodisks electrically active but also act as pillars to prevent them from stacking. This unique 2D nanostructured anode material manifests high reversible capacities, excellent cycle performance, and impressive rate capability. This work provides a new means for the controllable synthesis of 2D nanostructured materials for energy storage applications.

Funder

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3