A composite gel polymer electrolyte for sodium metal battery at a wide temperature range

Author:

Chen Changmiao1,Li Yuhang1,Wang Chengrui1,He Hongcheng2,Liu Ming1,He Yan‐Bing1ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Institute of Materials Research Tsinghua University Shenzhen People's Republic of China

2. Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics & Devices, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, School of Physics and Electronics Hunan University Changsha People's Republic of China

Abstract

AbstractSodium‐metal batteries (SMBs) are considered a promising alternative to lithium‐metal batteries due to their high‐energy density, low cost, and good low‐temperature performance. However, the serious side reactions and dendrites growth during the process of sodium ions deposition/stripping are the bottleneck that inhibits the further capitalization of SMBs, especially at low temperatures. Herein, a porous framework of 50 μm thickness composite gel‐polymer‐electrolyte (GPE) supported by polyvinylidene difluoride nanowires membrane and Na3Zr2Si2PO12 ceramic particles is proposed to tackle the issues. This GPE not only has high ionic conductivity but also can promote the uniform transportation of sodium ions to form a stable and dense metal‐GPE interfacial layer, which can effectively inhibit the side reactions and dendrites growth in a wide temperature range. The assembled Na//GPE//Na3V2(PO4)3 full battery provides a specific capacity of 100 mAh g−1 at 10 C for more than 3000 cycles calendar life at room temperature. Moreover, the full battery based on this GPE has an extraordinary performance at low temperatures, reaching a specific capacity of 93 and 61 mAh g−1 at 0.5 and 1 C at −20°C, respectively. This work provides a reliable solution for low‐temperature applications of high‐energy density and long‐cycle life SMBs.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3