Affiliation:
1. Institut für Chemie and IRIS Adlershof Humboldt‐Universität zu Berlin Berlin Germany
2. Department of Chemistry Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
Abstract
AbstractHigh‐power lithium‐ion batteries (LIBs) are required for a variety of technological applications, especially in the field of electric vehicles (EVs). Oxides based on niobium, titanium, and tungsten, and having crystallographic shear structures, are considered promising materials for high‐rate anodes of LIBs. The unique structures with open channels, multielectron redox processes, and a moderate potential window with a resulting solid electrolyte interface‐free interface provide them with rapid Li‐ion diffusion pathways, fairly high capacities, and high safety. In this review, the recent advancements in diverse crystallographic shear structure Nb‐based oxide anodes for fast Li‐ion energy storage are comprehensively presented, with a specific focus on the relationships between the crystal structures and electronic properties, lithiation mechanisms, kinetic properties, and electrochemical performance. The challenges in the design, optimization, and practical application of oxides with crystallographic shear structures are also discussed, together with strategies to overcome these challenges and prospects for the future.
Funder
China Scholarship Council
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献