Regeneration of spent lithium manganate into cation‐doped and oxygen‐deficient MnO2 cathodes toward ultralong lifespan and wide‐temperature‐tolerant aqueous Zn‐ion batteries

Author:

Yao Qi1,Xiao Fuyu1,Lin Chuyuan1,Xiong Peixun2ORCID,Lai Wenbin1,Zhang Jixiang3,Xue Hun14,Sun Xiaoli14,Wei Mingdeng5,Qian Qingrong146,Zeng Lingxing146ORCID,Chen Qinghua146

Affiliation:

1. Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, College of Carbon Neutral Modern Industry Fujian Normal University Fuzhou Fujian China

2. School of Chemical Engineering Sungkyunkwan University Suwon‐si Gyeonggi‐do Republic of Korea

3. Center of Fujian Solid Waste and Chemical Environmental Management Technology Department of Ecology and Environment of Fujian Province Fuzhou Fujian China

4. Fujian Key Laboratory of Pollution Control & Resource Reuse Fuzhou Fujian China

5. Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials Fuzhou University Fuzhou Fujian China

6. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry Nankai University Tianjin China

Abstract

AbstractManganese‐based compounds have been regarded as the most promising cathode materials for rechargeable aqueous zinc‐ion batteries (AZIBs) due to their high theoretical capacity. Unfortunately, aqueous Zn–manganese dioxide (MnO2) batteries have poor cycling stability and are unstable across a wide temperature range, severely limiting their commercial application. Cationic preinsertion and defect engineering might increase active sites and electron delocalization, which render the high mobility of the MnO2 cathode when operated across a wide temperature range. In the present work, for the first time, we successfully introduced lithium ions and ammonium ions into manganese dioxide (LNMOd@CC) by an electrodeposition combined with low‐temperature calcination route using spent lithium manganate as a raw material. The obtained LNMOd@CC exhibits a high reversible capacity (300 mAh g−1 at 1 A g−1) and an outstanding long lifespan of over 9000 cycles at 5.0 A g−1 with a capacity of 152 mAh g−1, which is significant for both the high‐value recycling of spent lithium manganate batteries and high‐performance modification for MnO2 cathodes. Besides, the LNMOd@CC demonstrates excellent electrochemical performance across wide temperature ranges (0–50°C). This strategy simultaneously alleviates the shortage of raw materials and fabricates electrodes for new battery systems. This work provides a new strategy for recovering cathode materials of spent lithium‐ion batteries and designing aqueous multivalent ion batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3