NiCo alloy‐anchored self‐supporting carbon foam as a bifunctional oxygen electrode for rechargeable and flexible Zn–air batteries

Author:

Dong Mengyang1ORCID,Fu Huai Qin1,Xu Yiming1,Zou Yu1,Chen Ziyao1,Wang Liang1,Hu Mengqing1,Zhang Kaidi1,Fu Bo1,Yin Huajie2ORCID,Liu Porun1ORCID,Zhao Huijun1ORCID

Affiliation:

1. Centre for Catalysis and Clean Energy, School of Environment and Science Griffith University Gold Coast Queensland Australia

2. Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences Beijing China

Abstract

AbstractThe design and fabrication of flexible, porous, conductive electrodes with customizable functions become the prime challenge in the development of new‐generation wearable electronics, especially for rechargeable batteries. Here, the NiCo bialloy particulate catalyst‐loaded self‐supporting carbon foam framework (NiCo@SCF) as a flexible electrode has been fabricated through one facile adsorption‐pyrolysis method using a commercial melamine foam. Compared with the electrode with Pt/C and Ir/C benchmark catalysts, the NiCo@SCF electrode exhibited superior bifunctional electrocatalytic performance in alkaline media with a half‐wave potential of 0.906 V for oxygen reduction reaction, an overpotential of 286 mV at j = 10 mA cm−2 for oxygen evolution reaction, and stable bifunctional performance with a small degradation after 20,000 voltammetric cycles. The as‐assembled aqueous zinc–air battery (ZAB) with NiCo@SCF as a self‐supporting air cathode demonstrated a high peak power density of 178.6 mW cm−2 at a current density of 10 mA cm−2 and a stable voltage gap of 0.94 V over a 540 h charge−discharge operation. Remarkably, the as‐assembled flexible solid‐state ZAB with self‐supporting NiCo@SCF as the air cathode presented an engaging peak power density of 80.1 mW cm−2 and excellent durability of 95 h undisrupted operation, showing promise for the design of wearable ZAB. The demonstrated electrode fabrication approach exemplifies a facile, large‐scale avenue toward functional electrodes, potentially extendable to other wearable electronics for broader applications.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3