A review of all‐solid‐state lithium‐selenium batteries

Author:

Guo Baiyu1,Zhang Liqiang1,Tang Yongfu12,Huang Jianyu13ORCID

Affiliation:

1. Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology Yanshan University Qinhuangdao Hebei China

2. Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao Hebei China

3. School of Materials Science and Engineering Xiangtan University Xiangtan Hunan China

Abstract

AbstractRechargeable lithium‐selenium batteries (LSeBs) are promising candidates for next‐generation energy storage systems due to their exceptional theoretical volumetric energy density (3253 mAh cm−3). However, akin to lithium‐sulfur batteries, the adoption of LSeBs has been hampered by problems such as polyselenides migration in liquid electrolytes, uncontrolled dendrite growth and safety concerns. To overcome these issues, researchers proposed to use the solid‐state electrolytes (SSEs) as a method, which could mitigate the formation of polyselenides. However, practical utilization of the all‐solid‐state Li‐Se batteries (ASSLSeBs) face significant obstacles, including sluggish redox kinetics during Se conversion (Se ↔ Li2Se), inadequate interfacial contact and formation of Li dendrites. Scientists have applied strategies to tackle these challenges. This article offers a timely review of emerging strategies. The article begins by conducting a detailed analysis of the working principles of ASSLSeBs and identifying the critical challenges that hinder practical application. Subsequently, the article presents a comprehensive summary of various strategies aimed at boosting the development of ASSLSeBs, which encompass advancements in Se cathode materials, optimization of SSEs, design of stable Li anodes, and approaches in addressing the interfacial challenge. Finally, the article offers further perspectives about promoting the application of ASSLSeBs. It highlights the need for continued research and development to overcome existing limitations. Overall, by understanding these emerging strategies, researchers could enhance the technology of LSeBs, bringing us closer to the practical realization of high‐energy storage systems.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3