An ultra‐stable sodium half/full battery based on a unique micro‐channel pine‐derived carbon/SnS2@reduced graphene oxide film

Author:

Sun Yu1,Yang Yan‐Ling1,Shi Xiao‐Lei2,Ye Liyuan1,Hou Yiwei1,Wang Jiaxin1,Suo Guoquan1,Lu Siyu3,Chen Zhi‐Gang2ORCID

Affiliation:

1. School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an China

2. School of Chemistry and Physics Queensland University of Technology Brisbane Queensland Australia

3. Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou China

Abstract

AbstractDeveloping super stability, high coulomb efficiency, and long‐span life of sodium‐ion batteries (SIBs) can significantly widen their practical industrial applications. In this study, we report a pine‐derived carbon/SnS2@reduced graphene oxide (PDC/SnS2@rGO) film with fast ion/electron transport micro‐channel used as a SIB anode, which shows ultrahigh stable stability and long‐span life. Functionally, a biomass PDC/SnS2@rGO film with ~30 μm micro carbon channel and ~1.2 μm thick carbon wall can simultaneously provide the fast electron transport path and the Na+ transport channel. Also, the two‐dimensional (2D) layered SnS2 particles attached to the carbon wall of PDC can increase more Na+ contact sites and shorten the Na+ transport path in the NaPF6 electrolyte. To avoid the separation of SnS2 from PDC during the sodiation process, rGO with excellent conductivity and flexibility is wrapped in the SnS2 outer layer as an “electronic garment”. A ~650 mA h g−1 high Na+ storage capacity at 0.1 A g−1 and ~99.8% ultrahigh coulomb efficiency after 800 cycles at 5 A g−1 are obtained when PDC/SnS2@rGO film is used as a SIB anode. Furthermore, a SIB full‐cell is assembled using PDC/SnS2@rGO film (anode) and Na3V2(PO4)3 (cathode), which exhibits a ~163.9 mA h g−1 high reversible capacity and ~99.7% coulomb efficiency performance. Our work provides a reasonable design strategy for the application of biomass‐derived carbon in SIBs, which may inspire more biomass‐derived material studies.

Funder

National Natural Science Foundation of China

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3