Affiliation:
1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
2. Guizhou Provincial Key Laboratory of Computational Nano‐Material Science Guizhou Education University Guiyang China
Abstract
AbstractOwing to the specific merits of low cost, abundant sources, and high physicochemical stability, carbonaceous materials are promising anode candidates for K+/Na+ storage, whereas their limited specific capacity and unfavorable rate capability remain challenging for future applications. Herein, the sulfur implantation in N‐coordinated hard carbon hollow spheres (SN‐CHS) has been realized for evoking a surface‐driven capacitive process, which greatly improves K+/Na+ storage performance. Specifically, the SN‐CHS electrodes deliver a high specific capacity of 480.5/460.9 mAh g−1 at 0.1 A g−1, preferred rate performance of 316.8/237.4 mAh g−1 at 5 A g−1, and high‐rate cycling stability of 87.9%/87.2% capacity retention after 2500/1500 cycles at 2 A g−1 for K+/Na+ storage, respectively. The underlying ion storage mechanisms are studied by systematical experimental data combined with theoretical simulation results, where the multiple active sites, improved electronic conductivity, and fast ion absorption/diffusion kinetics are major contributors. More importantly, the potassium ion hybrid capacitor consisting of SN‐CHS anode and activated carbon cathode deliver an outstanding energy/power density (189.8 Wh kg−1 at 213.5 W kg−1 and 9495 W kg−1 with 53.9 Wh kg−1 retained) and remarkable cycling stability. This contribution not only flourishes the prospective synthesis strategies for advanced hard carbons but also facilitates the upgrading of next‐generation stationary power applications.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献