OpenFAM: Programming disaggregated memory

Author:

Singhal Sharad1ORCID,Crasta Clarete Riana2,Abdulla K Mashood3,Barmawer Faizan3,Bhat Gautham3,Rao Ramya Ahobala3,P N Soumya3,Rajak Rishi Kesh K3

Affiliation:

1. Hewlett Packard Labs Hewlett Packard Enterprise Milpitas California USA

2. HPC Strategy and Operations Hewlett Packard Enterprise New York New York USA

3. HPC Strategy and Operations Hewlett Packard Enterprise Bangalore India

Abstract

AbstractHigh performance computing (HPC) clusters are increasingly handling workloads where working data sets cannot be easily partitioned or are too large to fit into local node memory. In order to enable HPC workloads to access memory external to the node, HPE has defined a programming API (OpenFAM) for developing applications that use large‐scale disaggregated memory. In this paper we describe an open‐source reference implementation of OpenFAM that can be used on scale‐up machines, traditional HPC clusters, as well as emerging disaggregated memory architectures. We demonstrate the efficiency of the implementation using micro‐benchmarks on InfiniBand and Slingshot‐based clusters.

Funder

U.S. Department of Defense

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Reference38 articles.

1. Ramirez‐GargalloG Garcia‐GasullaM MantovaniF.TensorFlow on state‐of‐the‐art HPC clusters: a machine learning use case. Paper presented at: 2019 19th IEEE/ACM International Symposium on Cluster Cloud and Grid Computing (CCGRID).2019:526‐533.

2. McAlpinJD.Memory Bandwidth and System Balance in HPC Systems Archives;2016.http://sc16.supercomputing.org/tag/memory‐bandwidth‐and‐system‐balance‐in‐hpc‐systems/

3. WeilandM BrunstH QuintinoT et al.An early evaluation of Intel's optane DC persistent memory module and its impact on high‐performance scientific applications. Proceedings of the International Conference for High Performance Computing Networking Storage and Analysis Association for Computing Machinery; New York NY USA.2019:1‐19.

4. DAOS and Intel®.Optane™ Technology for High‐Performance Storage.https://www.intel.com/content/www/us/en/high‐performance‐computing/daos‐high‐performance‐storage‐brief.html

5. SharmaDD.Compute Express Link 2.0 White Paper. tech. rep. Compute Express Link.2020.https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3