Rocking sensitivity of a dual‐block stack ‐ Numerical simulation and experimental evidence

Author:

Čeh Nina1ORCID,Jelenić Gordan1ORCID,Bićanić Nenad1

Affiliation:

1. Faculty of Civil Engineering University of Rijeka Croatia

Abstract

AbstractHistoric monuments, drywall structures, and graphite blocks in AGR nuclear power plants are block‐like structures that have to withstand rocking when subject to seismic excitation of their base, which can lead to overturning of some of their components and results in the collapse of the whole structure. We revisit the known nonlinear equations of motion for a dual‐block stack and present the conditions for transition between the eight possible rocking configurations (due to initiation of rocking, opening of new contacts, and collisions between blocks). An algorithm for the numerical simulation of rocking of the dual‐block stack is developed using the Newmark integration method, the Newton‐Raphson iteration method, and a novel contact detection and resolution procedure. The algorithm is used to evaluate rocking stability of five dual‐block stacks, one of which is compared to the results available in the literature. In parallel, a novel experimental program is designed and implemented, to validate the numerically obtained results using a shaking table. While most of the excitation conditions leading to stable rocking and limit values leading to overturning have been successfully validated, some discrepancies between the numerically and experimentally obtained results still exist and point to the need for improvement of the algorithm used, possibly through a more realistic energy‐loss mechanism. Most importantly, we have confirmed the known theoretical prediction that splitting a single block into two half‐size blocks benefits its rocking stability.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3