Enzymatic S‐Methylation of Thiols Catalyzed by Different O‐Methyltransferases

Author:

Abdelraheem Eman1,Jockmann Emely2,Li Jianyu3,Günther Stefan3,Andexer Jennifer N.2,Hagedoorn Peter‐Leon1,Hanefeld Ulf1ORCID

Affiliation:

1. Biocatalysis Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands

2. Institute of Pharmaceutical Sciences Pharmaceutical and Medicinal Chemistry University of Freiburg Albertstraße 25 79104 Freiburg Germany

3. Institute of Pharmaceutical Sciences Pharmaceutical Bioinformatics University of Freiburg Hermann-Herder-Straße 9 79104 Freiburg Germany

Abstract

AbstractS‐Adenosyl‐l‐methionine (SAM)‐dependent methyltransferases (MTs) are highly chemoselective enzymes grouped in C‐, N‐, O‐, S‐ and halide MTs, depending on the (hetero) atom that acts as the methyl group acceptor. So far, OMTs present the largest group, including many well investigated candidates. The catechol OMT from mammals such as from Rattus norvegicus (RnCOMT) is involved in the metabolism of neurotransmitters like dopamine. It is known to methylate the hydroxyl of the catechol ring in the 3 position. There are also reports showing that the regioselectivity of different COMTs can vary leading to different products with methyl groups in the 3 and or 4 positions. Nevertheless, there was only O‐methylation reported for COMTs. Another related MT, the caffeate OMT involved in the lignin biosynthesis of plants has also been reported as a chemoselective enzyme. In nature, S‐methylation is a rare phenomenon with different methyl donors being involved in the methyl transfer onto sulfur atoms. Several SAM‐dependent MTs are identified as S‐methyltransferases (SMTs), these are involved in salvaging pathways and xenobiotic metabolism of cells. Here, we report a new function of three OMTs; RnCOMT, a COMT from Myxococcus xanthus (MxSafC), and a CaOMT from Prunus persica (PpCaOMT) with acceptance towards different aromatic thiol substrates with up to full conversion.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3