Impact of Electrolyte Composition on Bulk Electrolysis of Furfural over Platinum Electrodes**

Author:

Hasse Joseph C.12ORCID,Manyé Ibáñez Marc12,Holewinski Adam12ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Colorado Boulder, CO 80309 USA

2. Renewable and Sustainable Energy Institute University of Colorado Boulder, CO 80309 USA

Abstract

AbstractPartial oxidation of furanic biomass derivatives such as furfural is of interest for the sustainable production of chemicals including furoic acid, maleic acid, and 2,5‐furandicarboxylic acid (FDCA). The oxidative bulk electrolysis of furfural is here investigated on platinum electrodes in acidic media. The effects of potential, concentration, pH, and supporting anion are studied, and selectivity trends are coupled with attenuated total reflectance surface‐enhanced infrared absorption spectroscopy (ATR‐SEIRAS) to illuminate adsorbate structures that influence the catalysis. Increasing potential is found to shift selectivity from primarily C5 products to C4 products, coincident with oxidation of the Pt surface. Selectivity changes are also observed moving from pH 1 to pH 4, with an increase in C5 products at higher pH. Changing from the weakly adsorbing perchlorate anion to the specifically‐adsorbing phosphate anion results in a number of changes that manifest differently depending on potential and pH. Selectivity to furoic acid is found to be highest above the pKa of phosphoric acid due to the strongly adsorbed phosphate ions suppressing flat‐lying configurations of furfural that lead to C−C cleavage. These results point toward opportunities to use electrolyte engineering to tune selectivity and optimize surface conditions to disfavor binding of inhibitory products.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3