Structure‐property Relationship of Double Perovskite Oxide towards Trifunctional Electrocatalytic Activity: Strategy for Designing and Development

Author:

Rom Tanmay1ORCID,Poojita 1,Paul Avijit Kumar1ORCID

Affiliation:

1. Department of Chemistry National Institute of Technology Kurukshetra Kurukshetra 136119 India

Abstract

AbstractIn the present scenario, the paramount significant roles of various heterogeneous catalysts stimulate the modern technologies to underpin the benchmark requirements for the generation of sustainable energy by reducing toxic fossil fuel emissions. Such critical role necessitates further development of cost‐effective highly efficient and earth‐abundant multifunctional or trifunctional electrocatalysts to promote the advancement of electrochemical overall water splitting performances, yet it is extremely desirable. In this review context, we present the development of double perovskite (DP) oxides as robust trifunctional catalysts for electrochemical oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reactions (HER) by rational design of multiple cationic redox sites with stoichiometric oxygen amount. Particularly, we highlight the importance of the structural modifications via doping, surface structure and oxygen stoichiometry as key parameters to tune the electrocatalytic activities and understand the insight into activity and mechanism of this oxide family. This perspective also describes controlled synthesis protocols including the surface structure of double perovskite oxides are key techniques for realizing a correlation between structure‐activity relationships of these materials. Finally, it is concluded by outlining the several aspects of optimization strategies and computational opportunities can expand the future scope of double perovskite oxides as robust trifunctional electrocatalysts.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3