Improved Catalytic Performance of Direct Dehydrogenation of Ethylbenzene by Creating Boron Defects on Phosphorus‐doped Boron Nitride

Author:

Liu Yuwei1,Liu Hongyang1,Luo Lukai1,Lin Baining1,Zhou Yonghua1ORCID,Wang Hanqing2,Wang Ping2,Mao Yu2

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha 410083 P.R. China

2. Hunan Engineering Research Center of Full Life-cycle Energy-efficient Buildings and Environmental Health College of Environmental Science and Engineering Central South University of Forestry and Technology Changsha 410004 P.R. China

Abstract

AbstractPhosphorus‐doped boron nitride (PBN) has been confirmed as an effective metal‐free catalyst for the direct dehydrogenation (DDH) of ethylbenzene to styrene. In this paper, we further used barbituric acid as co‐reactant sources to create B defects in both PBN and mesoporous PBN (m‐PBN) materials. The XPS, N2 adsorption‐desorption, UV‐vis DRS, EPR, 11B SS NMR characterizations indicated both the electronic and pore structures of the catalyst with B defects were adjusted. Except for the improvement of mass transfer caused by B defects, DFT calculations showed the increase of electron density in B defects areas could enhance the breaking of C−H in ethylbenzene and the bond‐forming of H−H, which was acted to improve the catalytic activity. The m‐PBN with B defects delivered the styrene production rate of 22.54 mmolST g−1 h−1 and stably run 300 h when in‐situ grown on Al2O3, proving that defect tuning strategy is useful to construct efficient catalysts for styrene production.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3