Using Phosphonic Acid Monolayers to Control CO2 Adsorption and Hydrogenation on Pt/Al2O3

Author:

Blanchette Zachary1,Zhou Xinpei1,Schwartz Daniel K.1,Medlin J. Will1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering University of Colorado Boulder Colorado 80309 United States

Abstract

AbstractPhosphonic acid (PA) self‐assembled monolayers (SAMs) were deposited onto Pt/Al2O3 catalysts to modify the support to enable control over CO2 adsorption and CO2 hydrogenation activity. Significant differences in catalytic activity toward CO2 hydrogenation (reverse water‐gas shift, RWGS) were observed after coating Al2O3 with PAs, suggesting that the reaction was mediated by CO2 adsorption on the support. Amine‐functionalized PAs were found to outperform their alkyl counterparts in terms of activity, however there was little effect of amine location in the SAM (i. e., spacing between the amine functional group and phosphonate attachment group). One amine‐PA and one alkyl‐PA, aminopropyl phosphonic acid (C3NH2PA) and methyl phosphonic acid (C1PA), respectively, were investigated in more detail. The C3NH2PA‐modified catalyst was found to bind CO2 as a combination of carbamate and bicarbonate. Additionally, at 30 °C, both PAs were found to reduce CO2 adsorption uptake by approximately 50 % compared to unmodified 5 %Pt/Al2O3. CO2 adsorption enthalpy was measured for the catalysts and found to be strongly correlated with hydrogenation activity, with the trend in binding enthalpy and CO2 hydrogen rate trending as uncoated >C3NH2PA>C1PA. PA SAMs were found to have weaker effects on CO binding and CO selectivity, consistent with selective modification of the Al2O3 support by the PAs.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3