High‐Performance Mn2O3‐Na2WO4/SiO2‐TiO2 Catalyst for the Oxidative Coupling of Methane: TiO2‐Modulated MnTiO3 Formation for Enhanced Low‐Temperature Performance

Author:

Zhang Qiaofei1ORCID,Wang Jifen2,Wang Lijun34,Wang Pengwei2

Affiliation:

1. School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China

2. School of Resources and Environmental Engineering Shanghai Polytechnic University Shanghai 201209 P. R. China

3. School of Energy and Materials Shanghai Polytechnic University Shanghai 201209 P. R. China

4. State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China

Abstract

AbstractAs a direct conversion route for the production of ethylene from methane, the oxidative coupling of methane (OCM) is highly promising. The Mn2O3‐Na2WO4/SiO2 catalyst doped with 44 μm anatase‐TiO2, consisting of 5 wt% TiO2, 5 wt% Mn2O3, 8 wt% Na2WO4 and balance SiO2 was prepared, achieving ∼22 % CH4 conversion with ∼72 % selectivity towards C2−C3 hydrocarbons even at the relatively low temperature of 700 °C. This catalyst was found to run stably for at least 300 h without signs of deactivation, which provides promising and comparable low‐temperature activity and selectivity but a more cost‐effective alternative to the previously‐reported Mn2O3‐Na2WO4/Ti‐MWW catalyst containing expensive Ti‐MWW zeolite. XRD and Raman analyses revealed that the in situ formation of MnTiO3 in the TiO2‐doped catalyst is responsible for the gains in low‐temperature OCM activity. In addition, TPR and TPO results also indicated that MnTiO3 activates O2 more readily at ∼650 °C, while three‐step switchover experiments clearly demonstrated that MnTiO3 could trigger facile redox behavior at low reaction temperatures. Thus, the MnTiO3‐induced redox cycle for O2 activation enables this TiO2‐doped catalyst to provide superior CH4 conversion at 700 °C.

Funder

National Natural Science Foundation of China

Henan University of Technology

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3