Iron Cobalt Phosphonate Derived Heteroatom Doped Metal Oxides as Superior Electrocatalysts for Water Oxidation Reaction

Author:

Mohanty Rupali Ipsita12,Mukherjee Ayan1,Basu Suddhasatwa13,Bhanja Piyali1,Jena Bikash Kumar12ORCID

Affiliation:

1. Materials Chemistry Department CSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India

2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

3. Department of Chemical Engineering Indian Institute of Technology (IIT) Delhi, Hauz Khas New Delhi, Delhi 110016 India

Abstract

AbstractThe development of low cost‐effective and highly efficient heterogeneous electrocatalysts is most appreciable in the research community. A newly designed microporous organic‐inorganic hybrid iron cobalt phosphonate (FeCoDPAM) is synthesized using diphenylphosphinamide as an organophosphorus ligand through a hydrothermal pathway without any template. To synthesize N, P‐codoped bimetallic oxides (NP/FeCoO350, NP/FeCoO550, and NP/FeCoO750), the as‐synthesized material FeCoDPAM has undergone pyrolysis at three different temperatures, i. e., 350, 550, 750 °C, respectively. The high specific surface area and a regular microporous array of N, P‐codoped iron cobalt oxide (NP/FeCoO350) material provide excellent oxygen evolution reaction (OER) activity. The NP/FeCoO350 material catalyzes OER with the overpotential of 331 mV at a current density of 10 mAcm−2 and Tafel slope of 56.7 mV dec−1 in 1.0 M KOH solution. The inclusion of iron in the cobalt phosphonate framework can change the electronic structure, and electron transfer can be feasible to the d‐orbital of cobalt. Due to the doping of heteroatoms such as N and P into the bimetallic oxide matrix, a synergistic effect can occur, which is the driving force for the efficient electrocatalytic OER activity. Also, the FeCoO350 displays stability with outstanding oxidative current up to 50 h time in chronoamperometry measurement.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3