Probing the Reactive Intermediates in CO2 Hydrogenation on Ni/Al2O3 Catalysts with Modulation Excitation Spectroscopy

Author:

Kock Mikkel1ORCID,Kowalewski Emil1ORCID,Iltsiou Dimitra1ORCID,Mielby Jerrik1ORCID,Kegnæs Søren1ORCID

Affiliation:

1. DTU Chemistry Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark

Abstract

AbstractIn‐situ infrared spectroscopy is one of the most effective methods to study the surface species on solid catalysts. Still, it is sometimes difficult to identify the reactive intermediates because spectator species, the catalyst support, and experimental noise also contribute to the total spectra. In this study, we prepared three archetypical Ni/Al2O3 catalysts that showed significantly different catalytic activity and selectivity for CO2 hydrogenation, depending on the calcination and reduction temperature. After detailed characterization, we used a combination of Modulation Excitation‐Phase Sensitive Detection‐Diffuse Reflectance Infrared Fourier Transform Spectroscopy (ME‐PSD‐DRIFTS) and Steady State Isotopic Kinetic Analysis (SSITKA) to show that bicarbonates and formates are key reactive intermediates. Furthermore, we also observe carbonyls on the catalyst with the most metallic character and highest selectivity towards CH4. These results confirm that the hydrogenation of CO2 occurs in an associative and consecutive reaction pathway that is highly structure‐sensitive. In this way, we also demonstrate how the simultaneous collection of spectroscopic and kinetic data during modulated or transient experiments is a powerful tool for investigating solid catalysts under realistic operation conditions.

Funder

Danmarks Frie Forskningsfond

Villum Fonden

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3