In Situ Formation of Suspended Graphene Windows for Lab‐Based XPS in Liquid and Gas Environments

Author:

Jones Elizabeth S.1,Drivas Charalampos234ORCID,Gibson Joshua S.1ORCID,Swallow Jack E. N.15,Jones Leanne A. H.1,Bricknell Thomas D. J.1,van Spronsen Matthijs A.5ORCID,Held Georg5ORCID,Isaacs Mark A.26ORCID,Parlett Christopher M. A.34ORCID,Weatherup Robert S.145ORCID

Affiliation:

1. Department of Materials University of Oxford Parks Road Oxford OX1 3PH United Kingdom

2. HarwellXPS Research Complex at Harwell Rutherford Appleton Labs Didcot Oxfordshire OX11 0FA United Kingdom

3. Department of Chemical Engineering University of Manchester Manchester M13 9PL United Kingdom

4. Catalysis Hub Research Complex at Harwell Rutherford Appleton Labs Didcot Oxfordshire OX11 0FA United Kingdom

5. Diamond Light Source Didcot Oxfordshire OX11 0DE United Kingdom

6. Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ United Kingdom

Abstract

AbstractEnvironmental cells sealed with photoelectron‐transparent graphene windows are promising for extending X‐ray photoelectron spectroscopy (XPS) to liquid and high‐pressure gas environments for in situ and operando studies. However, the reliable production of graphene windows that are sufficiently leak‐tight for extended measurements remains a challenge. Here we demonstrate a PDMS/Au(100 nm)‐supported transfer method that reliably produces suspended graphene on perforated silicon nitride membranes without significant contamination. A yield of ~95 % is achieved based on single‐layer graphene covering >98 % of the holes in the silicon nitride membrane. Even higher coverages are achieved for stacked bilayer graphene, allowing wet etching (aqueous KI/I2) of the Au support to be observed in a conventional lab‐based XPS system, thereby demonstrating the in situ formation of leak‐tight, suspended graphene windows. Furthermore, these windows allow gas‐phase measurements at close to atmospheric pressure, showing future promise for XPS under higher‐pressure gas environments in conventional lab‐based systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3