Tuning Strong Metal‐Support Interactions for Enhancing Direct Deoxygenation of Biomass‐Lignin Derived Phenolics

Author:

Ding Shining1,Zhu Xinli12ORCID

Affiliation:

1. Collaborative Innovation Center of Chemical Science and Engineering Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China

2. Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China

Abstract

AbstractCatalytic direct deoxygenation (DDO) of phenolic compounds to aromatics is an appealing approach for utilization of biomass‐lignin with minimal amount of H2 consumption. Metal/reducible metal oxide catalysts provide two functionalities, i. e., C−H bond formation (hydrogenation) and C−O bond breakage (deoxygenation), required for this reaction that takes place at the interfacial perimeter sites. Strong metal‐support interactions (SMSI) can profoundly alter the density and property of such sites. This short review summarized recent advances in tuning SMSI for enhancing DDO of phenolics. The approaches of varying reduction temperature, modulation of crystal facets and crystal phases of metal oxide, and reduction of mixed metal oxide were discussed for the origin for formation of SMSI, the degree of SMSI, and its consequence on the DDO performance. The analysis revealed that intermediate degree of SMSI with maximal density of metal/oxide interfacial perimeter site enhances DDO while minimizing unfavorable side reactions. This short review highlights the concept of tuning the interfacial perimeter sites via SMSI for reactions which require multiple functionalities and take place at the metal/oxide interface.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3