Affiliation:
1. Department of Chemistry and Material Science School of Chemical Engineering Aalto University Kemistintie 1 02150 Espoo Finland
2. Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 02150 Espoo Finland
3. Institute of Theoretical Chemistry Ulm University Albert-Einstein-Allee 11 89069 Ulm Germany
Abstract
AbstractCO2 reduction is typically performed at neutral pH. Under these conditions CO2 is in equilibrium with H2CO3, HCO3− and CO32−. However, despite their presence so far most studies solely focus on the contribution of CO2 while carbonate species as alternative reactants are generally neglected. Using density functional theory (DFT) modelling we explore the possible contribution of these carbonate species to the overall CO2 reduction activity for a Fe porphyrin model catalyst. Considering only reaction Gibbs free energies, we find the reduction of carbonic acid (H2CO3), bicarbonate (HCO3−) and CO2 to be equally likely. However, owing to a very high activation barrier for the initial adsorption of CO2 onto the catalyst, bicarbonate and carbonic acid reduction are found to be several orders of magnitude faster. These data are used to model the pH dependence of the reaction rates of the different reactants. These results confirm that carbonic acid and bicarbonate are the most likely reactants independent of the pH and reactor setup.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献