Bifunctional Substrates: In‐situ Ni, Fe co‐doped Cobalt Carbonate Hydroxides for Overall Water Splitting

Author:

Sun Yiqing1,Liang Xiongyi2,Yin Di2,Zhang Yuxuan2,Chen Dong2,Yue Kaihang1,Cai Ziyan1,Bu Xiuming1,Wang Xianying1,Ho Johnny C.23

Affiliation:

1. CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences (SICCAS) Shanghai 200050 P.R. China

2. Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong SAR P.R. China

3. State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Kowloon 999077 Hong Kong SAR P.R. China

Abstract

AbstractDeveloping highly efficient and stable electrocatalysts with large current densities for hydrogen and oxygen evolution is still challenging. Herein, Ni and Fe co‐doped cobalt carbonate hydroxide catalysts were designed in situ on the three‐dimensional porous NiFe foam through a facile one‐step hydrothermal strategy. Inductively coupled plasma atomic emission spectrum, transmission electron microscopy‐element mapping, X‐ray photoelectron spectroscopy, and DFT calculations demonstrate that the three‐dimensional NiFe foam substrate not only serves as the porous substrate, which enhances the exposed number of active sites, but also enhances the intrinsic activities of single active sites via introducing Ni and Fe dopants in the cobalt carbonate hydroxide catalyst during the hydrothermal process. The obtained hybrid electrocatalyst can be employed as a highly efficient and stable bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions, with overpotentials of 340 mV and 371 mV at 1000 mA cm−2, respectively. In addition, tests in an alkaline electrolyzer revealed that the current density could reach 1000 mA cm−2 at a voltage of 2 V and maintain stable operation for 100 h.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3