Toward Rational Design of Nickel Catalysts for Thermocatalytic Decomposition of Methane for Carbon Dioxide‐Free Hydrogen and Value‐Added Carbon Co‐Product: A Review

Author:

Weber Robert S.1ORCID,Xu Mengze1,Lopez‐Ruiz Juan A.1,Jiang Changle2,Hu Jianli2,Dagle Robert A.1ORCID

Affiliation:

1. Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland Washington USA

2. Department of Chemical & Biomedical Engineering West Virginia University Morgantown West Virginia USA

Abstract

AbstractThermocatalytic decomposition of methane provides opportunities for hydrogen (H2) production with no emission of carbon dioxide. However, high‐value carbon products need to be produced for economic deployment of thermocatalytic decomposition and to achieve a minimum H2 selling price below the U.S, Department of Energy target of $ 1/kg H2. In this review, we re‐evaluate data on catalyst development reported in the literature and propose correlations between catalyst characteristics, catalytic stability, and properties of carbon co‐products. In the first part of the review, growth mechanisms for carbon nanotubes using state‐of‐the‐art chemical vapor deposition are reviewed to catalog the effects of catalyst characteristics, the influence of carbon sources, interactions between metal particles and supports, and metal particle sizes on carbon growth. In the second part, representative developments in mono‐, bi‐, and tri‐metallic nickel catalysts are highlighted. We present kinetic analysis of reactions catalyzed by mono‐metallic nickel catalysts, which generates a correlation between metal particle size and catalyst stability. Rational design of Ni‐based catalysts for TCD of methane requires attention to the size of the metal particle and effective normalization of the reaction rates. Further attention to the distribution of the metal particle sizes may help identify catalyst properties that contribute longevity and selectivity to processes that use them. While it is tempting to focus on the highest valued carbon products (e. g., CNTs and CFs), analysis of the markets for other carbon products suggests that a more flexible approach may generate comparable returns without the risk associated with specialization.

Funder

Southern California Gas Company

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3