Defect‐induced Synthesis of Highly Dispersed Hydroxyapatite‐Supported Vanadium Oxide for the Oxidative Dehydrogenation of Cyclohexane

Author:

Song Xuefeng1,Zhou Feng2,Ma Huixia2,Liu Yifu1,Wu Guang1ORCID

Affiliation:

1. School of Chemistry and Materials Sciences Heilongjiang University Harbin 150080 China

2. Dalian Reserch Institute of Petroleum and Petrochemicals SINOPEC Dalian 116045 China

Abstract

AbstractHydroxyapatite (HAP) contains abundant defect sites and easily releases hydroxyl groups to produce new vacancies under calcination at high temperature. The highly dispersed VOx/HAP catalyst was prepared by an impregnation method using these defects as inducement. VOx species with different structures were analysed by XRD, XPS, H2‐TPR, Raman and UV–vis spectroscopy. At low calcination temperatures (500 °C and 600 °C), the V species are mainly V2O5 crystals. At high calcination temperatures (above 700 °C), VOx on the HAP surface fills these defect sites and strongly interacts with HAP to form Ca−O−V or P−O−V bands. These scattered defects improved the dispersion of V species. These highly dispersed VOx/HAP catalysts were used for oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene. The highly dispersed VOx/HAP catalyst showed a high selectivity for cyclohexene, and the selectivity reached 48.2 % when the conversion of cyclohexane was 13.1 % at 410 °C.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3