Novel Alkane Dehydrogenation Routes via Tailored Catalysts

Author:

Dai Xueya12,Qi Wei12ORCID

Affiliation:

1. Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 People's Republic of China

2. School of Materials Science and Engineering University of Science and Technology of China Shenyang 110016 People's Republic of China

Abstract

AbstractAlkane dehydrogenation to alkene represents a promising alternative route for conventional petroleum cracking processes heavily reliant on fossil resources. This Concept outlines the latest advancements of novel alkane dehydrogenation routes that offer potential solutions to intrinsic problems existing in routine direct dehydrogenation or oxidative dehydrogenation reactions, including CO2 assisted alkane dehydrogenation, chemical looping alkane oxidative dehydrogenation, dual‐path dehydrogenation and auto‐accelerated multiple alkane dehydrogenation route. These novel reaction routes exhibit unique advantages in enhancing the activity, selectivity and stability of the alkane dehydrogenation reaction system. The rational design of novel catalysts and proper choice of the reaction condition that well‐fitted these reaction routes is the key for achieving highly efficient and stable alkane dehydrogenation process. These present examples in this manuscript also highlight the importance of fundamental in‐depth understandings on the mechanism and structure‐function relations, which is the foundation for developing novel alkane dehydrogenation routes for practical applications.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3