Old Yellow Enzymes as Oxime Reductases: New Variants by Substrate‐Based Enzyme Engineering

Author:

Polidori Nakia1ORCID,Breukelaar Willem B.2,Stelzer Svila2,Reiter Tamara2ORCID,Glueck Silvia M.2ORCID,Kroutil Wolfgang234ORCID,Gruber Karl134ORCID

Affiliation:

1. Institute of Molecular Biosciences University of Graz Humboldtstraße 50 8010 Graz Austria

2. Institute of Chemistry University of Graz Heinrichstraße 28 8010 Graz Austria

3. Field of Excellence BioHealth University of Graz Graz Austria

4. BioTechMed-Graz Graz Austria

Abstract

AbstractThe reduction of oximes was recently identified as a promiscuous activity of Old Yellow Enzymes (OYEs). This reaction involves a two‐step reduction of α‐oxime‐ß‐ketoesters to the corresponding amines, which spontaneously dimerise to yield pyrazine derivatives. This biotransformation is currently limited to substrates with small substituents like methyl/ethyl on the keto moiety. We used a structure‐based approach to engineer 12‐oxophytodienoate reductase 3 (OPR3) from Solanum lycopersicum as a prototypical OYE to accept oximes with bulkier substituents. To this end, three single and two double variants were prepared and tested on six oxime substrates. The engineered variants indeed showed activity on some of the bulkier substrates, which had not been converted at all by the wild‐type enzyme, including the diester compound diethyl‐2‐(hydroximino) malonate. While we were unable to identify variants capable of converting substrates with branched and aromatic substituents, the results demonstrate the validity of our engineering approach, suggesting potential pathways for expanding the substrate scope of OYEs.

Funder

Austrian Science Fund

Karl-Franzens-Universität Graz

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3