Fine‐Tuning Texture of Highly Acidic HZSM‐5 Zeolite for Efficient Ethanol Dehydration

Author:

Pornsetmetakul Peerapol12,Klinyod Sorasak1,Rodaum Chadatip1,Salakhum Saros1,Iadrat Ploychanok1,Hensen Emiel J. M.2,Wattanakit Chularat1ORCID

Affiliation:

1. School of Energy Science and Engineering School of Molecular Science and Engineering Vidyasirimedhi Institute of Science and Technology 21210 Rayong Thailand

2. Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology 5600 MB Eindhoven The Netherlands

Abstract

AbstractAchieving high and stable ethylene yield from (bio)ethanol dehydration over highly active acidic zeolite remains challenging due to undesired side‐reactions. To overcome this issue, the fine‐tuned textural property of the HZSM‐5 catalyst with a hierarchical structure is crucial to overcome diffusion restrictions and limit undesired side‐reactions. Herein, the texture of high acid catalysts obtained via hydrothermal synthesis was simply tuned in the presence of tetrabutylammonium hydroxide as a meso‐ and micropore directing agent and the controlled molar ratio of NaF‐to‐Al2O3. The hierarchically designed HZSM‐5 with the small nanosheet size of 6.5 nm exhibits a high external surface area and mesopores, largely enhancing the catalytic performance of ethanol dehydration up to 95 % ethylene yield as well as preventing the formation of heavy hydrocarbons. To gain insights into the mechanistic points of view, the in situ DRIFTS study revealed that ethylene could form through ethoxy‐mediated mechanism or decomposition of diethyl ether (DEE). The catalyst deactivation caused by polyaromatics obtained from side‐reactions is the reason for low ethanol conversion and high DEE selectivity. Reducing the crystal size of highly acidic zeolite to ultra‐thin nanosheet can shorten the residence time of ethanol, intermediates, and products in porous structures, substantially suppressing the transformation of coke precursors into heavy hydrocarbons to achieve high and stable ethylene yield.

Funder

Vidyasirimedhi Institute of Science and Technology

Thailand Science Research and Innovation

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3