An Air and Moisture Stable Boat Shaped Hydroxo‐Bridged Ruthenium(II) Binuclear Complex for the Catalytic Hydrogenation of CO2

Author:

Das Uttam K.1ORCID,Tizzard Graham J.2ORCID,Coles Simon J.2ORCID,Owen Gareth R.1ORCID

Affiliation:

1. Chemical and Environmental Sciences, and Sustainable Environment Research Centre University of South Wales Pontypridd UK CF37 4AT

2. National Crystallography Service, School of Chemistry University of Southampton Highfield Southampton UK SO17 1BJ

Abstract

AbstractA new hydroxo‐bridged ruthenium (II) complex [{Ru(η6p‐cymene)(iPr2P−O)}2(μ‐OH)]Cl (2) has fortuitously been isolated from the reaction between the known ruthenium(II) complex [RuCl26p‐cymene)(iPr2P‐OH)] (1) in either CDCl3 or CHCl3 solutions in the presence of excess DBU (1,8‐diazabicyclo(5.4.0)undec‐7‐ene) at room temperature. Complex 2 is only formed under specific conditions as an orange‐colored air and moisture stable binuclear complex. It is formed via the deprotonation of the P−OH unit in [RuCl26p‐cymene)(iPr2P‐OH)]. Complex 2 has been fully characterized by spectroscopic and analytical methods. Its structure was determined by single crystal X‐ray diffraction which reveals a boat‐shaped motif containing a bridging hydroxide unit which undergoes hydrogen bonding with a chloride counterion. Complex 2 was utilized as a catalyst for the hydrogenation of CO2 to formic acid salt using molecular hydrogen. The catalytic reactions were performed at 100 °C in THF in the presence of DBU as a base to isolate [DBU+H][OC(O)H] salt as the final product. Using catalyst loadings down to 0.01 mol%, it was possible to hydrogenate gaseous CO2 with TONs up to 9900.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3