Amorphous‐Confined Crystalline CuO Nanoflakes for Enhanced Ethylene Production from CO2 Electroreduction

Author:

Zhao Dandan1,Zhang Shaoyang2,Guo Tianyu34,Zhao Qiang24,Du Jianping124ORCID,Li Jinping24

Affiliation:

1. College of Chemistry Taiyuan University of Technology Taiyuan 030024 P. R. China

2. College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan 030024 P. R. China

3. College of Environment Science and Engineering Taiyuan University of Technology Jinzhong 030600 P. R. China

4. Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024 P. R. China

Abstract

AbstractThe electrocatalytic reduction of CO2 to high value‐added chemicals is one of the effective technologies to achieve the goal of carbon neutralization. However, highly selective production of hydrocarbon via electrochemical conversion of CO2 still has great challenges. Herein, a unique CuO phase composition is constructed that consists of rectangular nanoflakes possessing crystalline/amorphous structures by the facile strategy. Crystalline CuO square nanoblocks are confined in amorphous nanoflakes and form crystalline/amorphous hybrid phase. The results of electrocatalytic CO2 reduction demonstrate that this crystalline/amorphous CuO material exhibits superior CO2 conversion ability with ethylene Faradaic efficiency of 58.3 % at −1.08 V vs. RHE, which is ascribed to nanoflake structures and fast electron transfer on the crystalline/amorphous interfaces because of superior conductivity of amorphous CuO. The present research provides an effective route to reconstruct novel crystalline/amorphous interfaces of CuO for catalysis applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3