Affiliation:
1. Key Laboratory for Green Chemical Technology of Ministry of Education R&D Center for Petrochemical Technology Tianjin University Tianjin 300072 China
2. Zhejiang Institute of Tianjin University, Ningbo Zhejiang 315201 China
3. State Key Laboratory of Engines Tianjin University Tianjin 300072 China
Abstract
AbstractZr based metallosilicalites, especially Zr‐ß, is promising catalyst for the conversion of ethanol to 1,3‐butadiene, which is considered to be a sustainable alternative to petroleum steam cracking. However it is suffering from deactivation derived from coking and unsatisfied catalytic activity derived from deficient Lewis acidity. For these issues, a dissolution‐recrystallization process through tetraethyl ammonium hydroxide treatment (TEAOH) for enhancing porosity and Lewis acidity of Zr‐ß zeolite was developed in this study. A balance of dissolution and recrystallization existed in this process, which was produced by OH− etching and templating of TEA+ ions, creating additional mesoporosity. Zirconium active sites maintained tetrahedral coordination, while the Lewis acidity was enhanced by creating higher proportion open sites in framework. The recrystallized Zr‐ß exhibited higher catalytic activity and stability in the conversion of ethanol‐acetaldehyde to butadiene due to the compromise of microporosity and mesoporosity, as well as the appropriate enhancement of Lewis acidity.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献