CO2‐Hydrogenation to Methanol over CuO/ZnO Based Infiltration Composite Catalyst Spheres

Author:

Fritsch Carl1ORCID,Dornseiffer Jürgen2ORCID,Blankenstein Jule1,Noyong Michael3ORCID,Groteklaes Christian1,Simon Ulrich3ORCID

Affiliation:

1. Environmental and Process Engineering (UVT) Research Institute for Water Management and Climate Future at RWTH Aachen University (FiW) Kackertstraße 15–17 52072 Aachen Germany

2. Institute of Energy and Climate Research: Materials Synthesis and Processing (IEK-1) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52428 Jülich Germany

3. Institute of Inorganic Chemistry (IAC) RWTH Aachen University Landoltweg 1a 52074 Aachen Germany

Abstract

AbstractMultiple active component catalysts for efficient conversion of CO2 to Methanol (MeOH) are synthesized through coating γ‐Al2O3 carrier spheres by incipient wetness impregnation method (IWI). The well‐known bimetallic Copper Oxide/Zinc Oxide (CuO/ZnO)is promoted in three steps, first by Cerium Oxide (CeO2), then additionally with Zirconium Oxide (ZrO2) and finally with Calcium Oxide (CaO) resulting in four carrier catalysts with high surface area and catalyst pore volume. Quaternary and quinary carrier catalysts promoted with moderate CeO2, ZrO2 in the quaternary (20 % CZCZ) and additionally with CaO (20 % CZCZC) in the quinary catalysts demonstrate high CO2‐conversion ratios (16.2 % and 18.7 %) and space time yields (0.51 and 0.47 gMeOH h−1 gCatalyst−1) at 5 MPa and 250 °C. The high conversion ratios (XCO2) and good methanol space‐time‐yields (STYMeOH) are attributed to enhanced copper dispersion and several multi metal oxide component interactions essential to enhance CO2‐activation and ‐conversion through the catalytic systems as well as very high overall surface area. Compared to related studies, the carrier catalysts show superior conversion rates, proving the effectiveness of the introduced multi‐component carrier catalyst and extending the understanding of infiltrate composites as possible large‐scale application alternatives to precipitated MeOH catalyst systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3