Affiliation:
1. Department of Chemistry City University of Hong Kong Hong Kong Hong Kong SAR
Abstract
AbstractAmides are crucial components of biomolecules and are extensively used in polymer, pharmaceutical, and agrochemical production. Their direct hydrolysis offers great potential for exploring protein structures and producing valuable carboxylic acids in biological and industrial applications. Nevertheless, activating the resonance‐stabilized C−N bond in amides poses a formidable challenge. Extensive research over the past decades has reported various transition metal‐based complexes and solid catalysts that catalyze this reaction. These catalysts possess Lewis acid (LA) sites and exhibit enhanced activity when further combined with Brönsted acid (BA) sites. In this study, we present the first demonstration of amide hydrolysis on TiO2, a rock‐forming material, offering valuable insights into its surface activity. By using acetamide as the model compound, we observed that the thermodynamically stable (101) surface of TiO2 remained inert up to 95 °C. Surprisingly, the high‐energy (001) surface of TiO2 activated amide hydrolysis at a temperature as low as 25 °C. Contrary to previous reports, the fluorine‐modified (001) surface with additional BA sites required temperatures above 70 °C likely due to hydrogen bond stabilization by nearby fluorine atoms. These findings provide guidance for the development of cost‐effective catalysts with improved activity.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献