Affiliation:
1. Research and Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
Abstract
AbstractSulfur poisoning is a major challenge in catalytic processes where it can result in a gradual decline in the activity of the metal catalyst or a complete deactivation of the catalyst. Many studies were conducted to investigate the effects of sulfur poisoning on metals and address this challenge by developing a catalyst that is resistant to sulfur poisoning without compromising its performance. Boron doping showed to be a promising approach to modify the properties of metal catalysts and improve their performance in various applications. In this work, periodic density functional theory (DFT) calculations were conducted to study boron doping on a number of metals and its impact on sulfur poisoning. The DFT calculations show that boron doping impacts metals differently. Boron doping is favourable on few metals (Pd, Pt, Rh and Ru) and very unfavourable on other metals (e. g. Ag and Cu). On Pd, Pt and Rh, boron doping has a positive impact on reducing sulfur poisoning, with the impact varying with boron concentration. Finally, as a case study, the impact of boron doping on H2S splitting to create H2 was examined and boron doping was shown to have a positive impact on the performance of Pd‐based catalyst.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献