Direct Catalytic Conversion of Carbon Dioxide to Liquid Hydrocarbons over Cobalt Catalyst Supported on Lanthanum(III) Ion‐Doped Cerium(IV) Oxide

Author:

Tashiro Keigo12ORCID,Konno Hikaru1,Yanagita Akihide1ORCID,Mikami Shunta3,Shimoda Shuhei4,Taira Erika5,Rivera Rocabado David S.3ORCID,Shimizu Ken‐ichi46ORCID,Ishimoto Takayoshi3ORCID,Satokawa Shigeo1ORCID

Affiliation:

1. Graduate School of Science and Technology Seikei University 3-3-1 Kichijoji-Kitamachi, Musashino-shi Tokyo 180-8633 Japan

2. College of Engineering, Academic Institute Shizuoka University 3-5-1 Johoku, Chuo-ku, Hamamatsu-shi Shizuoka 432-8561 Japan

3. Graduate School of Advance Science and Engineering Hiroshima University 1-4-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8527 Japan

4. Institute for Catalysis Hokkaido University Kita 21 Nishi 10, Kita-ku Sapporo 001-0021 Japan

5. Applicative Solution Lab Division JASCO Corporation 2967-5 Ishikawa-machi, Hachioji-shi Tokyo 192-8537 Japan

6. Center for Energy System Design (CESD) International Institute for Carbon-Neutral Energy Research (WPI−I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan

Abstract

AbstractDirect CO2 conversion to liquid hydrocarbons (HCs) in a single process was achieved using cobalt (Co) catalysts supported on lanthanum ion (La3+)‐doped cerium oxide (CeO2) under a gas stream of H2/CO2/N2=3/1/1. The yield of liquid HCs was the highest for 30 mol% of La3+‐doped CeO2, which was because extrinsic oxygen vacancy formed by doping La3+ could act as an effective reaction site for reverse water gas shift reaction. However, the excess La3+ addition afforded surface covering lanthanum carbonates, resulting in depression of the catalytic performance. On the other hand, bare CeO2 lead to an increase in the selectivity of undesirable methane, which arose from reduction of CO2 to CO proceeding by intrinsic oxygen vacancy generated by only Ce3+, and weaker CO2 capture ability of intrinsic oxygen vacancy than extrinsic one, resulting in the proceeding of Sabatier reaction on Co catalyst. The rational design of reaction sites presented in this study will contribute to sustainability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3