Impact of land surface processes on convection over West Africa in convection‐permitting ensemble forecasts: A case study using the MOGREPS ensemble

Author:

Semeena Valiyaveetil Shamsudheen1ORCID,Klein Cornelia12,Taylor Christopher M.13ORCID,Webster Stuart4

Affiliation:

1. UK Centre for Ecology and Hydrology Wallingford UK

2. Department of Atmospheric and Cryospheric Sciences University of Innsbruck Innsbruck Austria

3. National Centre for Earth Observation Wallingford UK

4. UK Met Office Exeter UK

Abstract

AbstractSoil moisture (SM) affects weather through its impact on surface flux partitioning, influencing vertical atmospheric profiles and circulations driven by differential surface heating. In West Africa, observational studies point to a dominant negative SM‐precipitation feedback, where dry soils help to initiate and maintain convection. In this context, serious concerns exist about the ability of models with parameterised convection to simulate this observed sensitivity of daytime convection to SM. Here, we evaluate the effect of initial SM perturbations in a short‐range ensemble forecast over West Africa, comparing the UK Met Office Global and Regional Ensemble Prediction System (MOGREPS) with parameterised convection (GLOB‐ENS) to its regional convection‐permitting counterpart (CP‐ENS). Results from both models suggest SM perturbations introduce considerable spread into daytime evaporative fraction (EF) and near‐surface temperatures. This spread is still evident on Day 3 of the forecast. Both models also show a tendency to increased afternoon rainfall frequency over negative EF anomalies, reproducing the observed feedback. However, this effect is more pronounced in CP‐ENS than GLOB‐ENS, which illustrates the potential for process‐based forecast improvements at convection‐permitting scales. Finally, we identify persistent biases in rainfall caused by land cover mapping issues in the operational GLOB‐ENS setup, emphasising the need for careful evaluation of different mapping strategies for land cover.

Funder

Global Challenges Research Fund

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3