Liver Progenitors Isolated from Adult Healthy Mouse Liver Efficiently Differentiate to Functional Hepatocytes In Vitro and Repopulate Liver Tissue

Author:

Tanimizu Naoki1,Ichinohe Norihisa1,Ishii Masayuki12,Kino Junichi1,Mizuguchi Toru2,Hirata Koichi23,Mitaka Toshihiro1

Affiliation:

1. Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan

2. Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan

3. Department of Surgery, JR Sapporo Hospital, Sapporo, Japan

Abstract

Abstract It has been proposed that tissue stem cells supply multiple epithelial cells in mature tissues and organs. However, it is unclear whether tissue stem cells generally contribute to cellular turnover in normal healthy organs. Here, we show that liver progenitors distinct from bipotent liver stem/progenitor cells (LPCs) persistently exist in mouse livers and potentially contribute to tissue maintenance. We found that, in addition to LPCs isolated as EpCAM+ cells, liver progenitors were enriched in CD45−TER119−CD31−EpCAM−ICAM-1+ fraction isolated from late-fetal and postnatal livers. ICAM-1+ liver progenitors were abundant by 4 weeks (4W) after birth. Although their number decreased with age, ICAM-1+ liver progenitors existed in livers beyond that stage. We established liver progenitor clones derived from ICAM-1+ cells between 1 and 20W and found that those clones efficiently differentiated into mature hepatocytes (MHs), which secreted albumin, eliminated ammonium ion, stored glycogen, and showed cytochrome P450 activity. Even after long-term culture, those clones kept potential to differentiate to MHs. When ICAM-1+ clones were transplanted into nude mice after retrorsine treatment and 70% partial hepatectomy, donor cells were incorporated into liver plates and expressed hepatocyte nuclear factor 4α, CCAAT/enhancer binding protein α, and carbamoylphosphate synthetase I. Moreover, after short-term treatment with oncostatin M, ICAM-1+ clones could efficiently repopulate the recipient liver tissues. Our results indicate that liver progenitors that can efficiently differentiate to MHs exist in normal adult livers. Those liver progenitors could be an important source of new MHs for tissue maintenance and repair in vivo, and for regenerative medicine ex vivo.

Funder

Ministry of Education, Culture, Sports, Science and Technology, Japan, Grants-in-Aid for Scientific Research

Grants-in-Aid for Scientific Research

Grants-in Aid for Grant-in-Aid for Scientific Research on Innovative Areas

Grants-in-Aid for Exploratory Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3