A global meta‐analysis reveals contrasting impacts of air, light, and noise pollution on pollination

Author:

Guenat Solène123ORCID,Dallimer Martin1ORCID

Affiliation:

1. Sustainability Research Institute, School of Earth and Environment University of Leeds LS2 9JT Leeds UK

2. Institute of Landscape Planning and Ecology University of Stuttgart Keplerstraße 11 D‐70174 Stuttgart Germany

3. Swiss Federal Research Institute for Forest Snow and Landscape WSL Zürcherstrasse 111 8903 Birmensdorf Switzerland

Abstract

AbstractIn the face of biodiversity decline, understanding the impact of anthropogenic disturbances on ecosystem functions is critical for mitigation. Elevated levels of pollution are a major threat to biodiversity, yet there is no synthesis of their impact on many of the major ecosystem functions, including pollination. This ecosystem function is both particularly vulnerable as it depends on the fine‐tuned interaction between plants and pollinators and hugely important as it underpins the flora of most habitats as well as food production. Here, we untangle the impact of air, light, and noise pollution on the pollination system by systematically evaluating and synthesizing the published evidence via a meta‐analysis. We identified 58 peer‐reviewed articles from three databases. Mixed‐effects meta‐regression models indicated that air pollution negatively impacts pollination. However, there was no effect of light pollution, despite previous studies that concentrated solely on pollinators suggesting a negative impact. Evidence for noise pollution was extremely limited. Unless action is taken to tackle air pollution, the capacity to support well‐functioning diverse pollination systems will be compromised, with negative consequences for habitat conservation and food security.

Funder

Engineering and Physical Sciences Research Council

Natural Environment Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3