Proprioception‐related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review

Author:

Lau Kenney K. L.1ORCID,Law Karlen K. P.1ORCID,Kwan Kenny Y. H.1ORCID,Cheung Jason P. Y.12ORCID,Cheung Kenneth M. C.12ORCID

Affiliation:

1. Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong

2. Department of Orthopaedics and Traumatology The University of Hong Kong Shenzhen Hospital Shenzhen China

Abstract

AbstractSince idiopathic scoliosis is a multifactorial disorder, the proprioceptive defect is considered one of its etiological factors. Genetic studies have separately revealed this relationship, yet it remains indeterminate which specific genes that related to proprioception contributed to the initiation, progression, pathology, and treatment outcomes of the curvature. A systematic search was conducted on four online databases, including PubMed, Web of Science, Embase, and Academic search complete. Studies were included if they involved human or animal subjects with idiopathic scoliosis and evaluated with proprioceptive genes. The search period was the inception of the database to February 21, 2023. Four genes (i.e., Ladybird homeobox 1 [LBX1], Piezo type mechanosensitive ion channel component 2 [PIEZO2], Runx family transcription factor 3 [RUNX3], and neurotrophin 3 [NTF3]) investigated in 19 studies were included. LBX1 has confirmed the correlation with the development of idiopathic scoliosis in 10 ethnicities, whereas PIEZO2 has shown a connection with clinical proprioceptive tests in subjects with idiopathic scoliosis. However, curve severity was less likely to be related to the proprioceptive genes. The potential pathology took place at the proprioceptive neurons. Evidence of proprioception‐related gene mutations in association with idiopathic scoliosis was established. Nevertheless, the causation between the initiation, progression, and treatment outcomes with proprioceptive defect requires further investigation.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3