Rarity updated ensemble with oversampling: An ensemble approach to classification of imbalanced data streams

Author:

Nouri Zahra1,Kiani Vahid1ORCID,Fadishei Hamid1

Affiliation:

1. Computer Engineering Department University of Bojnord Bojnord Iran

Abstract

AbstractToday's ever‐increasing generation of streaming data demands novel data mining approaches tailored to mining dynamic data streams. Data streams are non‐static in nature, continuously generated, and endless. They often suffer from class imbalance and undergo temporal drift. To address the classification of consecutive data instances within imbalanced data streams, this research introduces a new ensemble classification algorithm called Rarity Updated Ensemble with Oversampling (RUEO). The RUEO approach is specifically designed to exhibit robustness against class imbalance by incorporating an imbalance‐specific criterion to assess the efficacy of the base classifiers and employing an oversampling technique to reduce the imbalance in the training data. The RUEO algorithm was evaluated on a set of 20 data streams and compared against 14 baseline algorithms. On average, the proposed RUEO algorithm achieves an average‐accuracy of 0.69 on the real‐world data streams, while the chunk‐based algorithms AWE, AUE, and KUE achieve average‐accuracies of 0.48, 0.65, and 0.66, respectively. The statistical analysis, conducted using the Wilcoxon test, reveals a statistically significant improvement in average‐accuracy for the proposed RUEO algorithm when compared to 12 out of the 14 baseline algorithms. The source code and experimental results of this research work will be publicly available at https://github.com/vkiani/RUEO.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3