Forecasting intraday financial time series with sieve bootstrapping and dynamic updating

Author:

Shang Han Lin1ORCID,Ji Kaiying2

Affiliation:

1. Department of Actuarial Studies and Business Analytics Macquarie University Sydney New South Wales Australia

2. Discipline of Accounting, Governance and Regulation The University of Sydney Sydney New South Wales Australia

Abstract

AbstractIntraday financial data often take the form of a collection of curves that can be observed sequentially over time, such as intraday stock price curves. These curves can be viewed as a time series of functions observed on equally spaced and dense grids. Due to the curse of dimensionality, high‐dimensional data pose challenges from a statistical aspect; however, it also provides opportunities to analyze a rich source of information so that the dynamic changes within short‐time intervals can be better understood. We consider a sieve bootstrap method to construct 1‐day‐ahead point and interval forecasts in a model‐free way. As we sequentially observe new data, we also implement two dynamic updating methods to update point and interval forecasts for achieving improved accuracy. The forecasting methods are validated through an empirical study of 5‐min cumulative intraday returns of the S&P/ASX All Ordinaries Index.

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3