Local adaptation and broad performance are synergistic to productivity in modern barley

Author:

Ewing Patrick M.1ORCID,Kantar Michael B.2ORCID,Killian Erik3,Neyhart Jeffrey L.4ORCID,Sherman Jamie D.3,Williams Jessica L.3ORCID,Lachowiec Jennifer A.3ORCID,Eberly Jed O.5ORCID

Affiliation:

1. USDA‐ARS, North Central Agricultural Research Laboratory Brookings South Dakota USA

2. Department of Tropical Plant and Soil Science University of Hawaii at Manoa Honolulu Hawaii USA

3. Plant Sciences & Plant Pathology Department Montana State University Bozeman Montana USA

4. USDA‐ARS, Genetic Improvement for Fruits and Vegetables Laboratory Chatsworth New Jersey USA

5. Central Agricultural Research Center Montana State University Moccasin Montana USA

Abstract

AbstractCrop populations have enormous impacts on agricultural productivity, yet decelerating gains from breeding suggest that selection strategies need to be reconsidered to better align priorities of breeders and growers. Breeders benefit from releasing broadly adapted varieties that perform acceptably well across their target region; growers benefit from selecting a variety that specializes in their specific location. We tested whether these interests are compatible using 182 entries in a mega‐population of malting barley (spring, two‐row, multi‐environment trial [S2MET] population; Hordeum vulgare L.), which was grown across the northern United States. We assessed the strength of genetic–environment interactions (G×E), quantified local adaptation benefits, and tested whether local adaptation and genetic yield potential were correlated. Breeding programs favored broad adaptation (p < 0.001). Still, 63% of entries (114) were among the top 10%, best performing at some locations, and among the worst 10% at others. Some of the best overall entries were specialists, performing especially well in their home locations, and in general, genetic potential and local specialization were positively correlated (p < 0.001). These results suggest that breeding for local performance and broad performance are mutually supporting goals. Releasing broadly excellent, locally exceptional varieties may accelerate genetic gain to meet projected global agricultural demand.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3