Recovery of root hydraulic conductance and xylem vessel diameter following prolonged water deficit of maize

Author:

Jafarikouhini Nahid1,Sinclair Thomas R.1ORCID

Affiliation:

1. Crop and Soil Sciences Department North Carolina State University Raleigh North Carolina USA

Abstract

AbstractTo sustain crop growth following soil water deficit, it is essential to have rapid recovery of leaf gas exchange. One basis for rapid recovery would be the rapid return of root hydraulic conductance to predrought levels to support water transport to the plant shoot. In this study, transpiration and root hydraulic conductance were measured over a 9‐day recovery period following an initial water‐deficit treatment of three maize (Zea mays L.) cultivars. In addition, xylem vessel diameter was measured during the recovery period at different positions from the root tip. The initiation of recovery in the transpiration rate occurred in all three cultivars within 3 days after watering, although the root conductance and transpiration rate of one cultivar were much lower than the other two cultivars. Root conductance and vessel diameter increased more slowly than the recovery of transpiration. There was an indication that transpiration could have been limited by root hydraulic conductance only when its values were low during recovery. The relationship between hydraulic conductance and vessel diameter did not, however, indicate a Poiseuille's law relationship between the two variables. Overall, cultivar variability in recovery from water deficit of the transpiration rate and root hydraulic conductance indicates that the selection for rapid recovery of leaf gas exchange following water deficit could be an important component of genotype selection in maize breeding programs.

Publisher

Wiley

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3