System response curve based first‐order optimization algorithms for cyber‐physical‐social intelligence

Author:

Yao Biyuan1ORCID,Zhang Qingchen1,Feng Ruonan1,Wang Xiaokang1

Affiliation:

1. School of Computer Science and Technology Hainan University Haikou China

Abstract

AbstractThe continuous enhancement of optimization algorithms and their parameters has spurred the expansion of AI into novel application domains such as image recognition and smart home technology. This paper employs the system response curve (SRC) to the adaptive learning rate optimizer, addressing challenges associated with the establishment of the optimizer control model and parameter adjustments affecting the dynamic performance of the system. These insights offer theoretical support for the optimizer's application in deep learning models. To begin, the adaptive learning rate optimizer is a time‐varying system. Based on the intrinsic relationship between the network optimization and the control system, the time domain expression and approximate transfer function of the adaptive learning rate optimizer are derived, and the system dynamic model is established. Furthermore, based on the system control model of the optimizer, it is proposed to explain the performance impacts of different optimizers and their hyperparameters on the deep learning model through the SRC. Finally, experiments are performed on the MNIST, CIFAR‐10, UTKinect‐Action3D, and Florence3D‐Action datasets to validate the control theory of explaining optimizers through system response curves. The experimental results show that the recognition performance of the Adaptive Moment Estimate (Adam) is better than that of the Adaptive Gradient (AdaGrad) and Root Mean Square Propagation (RMSprop). Additionally, the learning rate affects the model training speed, and the practical application aligns with the theoretical analysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3